1,184 research outputs found

    A two-step optimized measurement for the phase-shift

    Get PDF
    A two-step detection strategy is suggested for the precise measurement of the optical phase-shift. In the first step an unsharp, however, unbiased joint measurement of the phase and photon number is performed by heterodyning the signal field. Information coming from this step is then used for suitable squeezing of the probe mode to obtain a sharp phase distribution. Application to squeezed states leads to a phase sensitivity scaling as Δϕ≃N−1\Delta\phi\simeq N^{-1} relative to the total number of photons impinged into the apparatus. Numerical simulations of the whole detection strategy are also also presented

    Effect of external pressure on the magnetic properties of RRCoAsO (RR = La, Pr, Sm): a μ\muSR study

    Full text link
    We report on a detailed investigation of the itinerant ferromagnets LaCoAsO, PrCoAsO and SmCoAsO performed by means of muon spin spectroscopy upon the application of external hydrostatic pressures pp up to 2.42.4 GPa. These materials are shown to be magnetically hard in view of the weak dependence of both critical temperatures TCT_{C} and internal fields at the muon site on pp. In the cases RR = La and Sm, the behaviour of the internal field is substantially unaltered up to p=2.4p = 2.4 GPa. A much richer phenomenology is detected in PrCoAsO instead, possibly associated with a strong pp dependence of the statistical population of the two different crystallographic sites for the muon. Surprisingly, results are notably different from what is observed in the case of the isostructural compounds RRCoPO, where the full As/P substitution is already inducing a strong chemical pressure within the lattice but pp is still very effective in further affecting the magnetic properties.Comment: 8 pages, 9 figure

    Singling out the effect of quenched disorder in the phase diagram of cuprates

    Get PDF
    We investigate the specific influence of structural disorder on the suppression of antiferromagnetic order and on the emergence of cuprate superconductivity. We single out pure disorder, by focusing on a series of Yz_{z}Eu1−z_{1-z}Ba2_2Cu3_3O6+y_{6+y} samples at fixed oxygen content y=0.35y=0.35, in the range 0≤z≤10\le z\le 1. The gradual Y/Eu isovalent substitution smoothly drives the system through the Mott-insulator to superconductor transition from a full antiferromagnet with N\'eel transition TN=320T_N=320 K at z=0z=0 to a bulk superconductor with superconducting critical temperature Tc=18T_c=18 K at z=1z=1, YBa2_2Cu3_3O6.35_{6.35}. The electronic properties are finely tuned by gradual lattice deformations induced by the different cationic radii of the two lanthanides, inducing a continuous change of the basal Cu(1)-O chain length, as well as a controlled amount of disorder in the active Cu(2)O2_2 bilayers. We check that internal charge transfer from the basal to the active plane is entirely responsible for the doping of the latter and we show that superconductivity emerges with orthorhombicity. By comparing transition temperatures with those of the isoelectronic clean system we deterime the influence of pure structural disorder connected with the Y/Eu alloy.Comment: 10 pages 11 figures, submitted to Journal of Physics: Condensed Matter, Special Issue in memory of Prof. Sandro Massid

    Evidence of orbital reconstruction at interfaces in La0.67Sr0.33MnO3 films

    Full text link
    Electronic properties of transition metal oxides at interfaces are influenced by strain, electric polarization and oxygen diffusion. Linear dichroism (LD) x-ray absorption, diffraction, transport and magnetization on thin La0.7Sr0.3MnO3 films, allow identification of a peculiar universal interface effect. We report the LD signature of preferential 3d-eg(3z2-r2) occupation at the interface, suppressing the double exchange mechanism. This surface orbital reconstruction is opposite of that favored by residual strain and independent of dipolar fields, chemical nature of the substrate and capping.Comment: 13 pages, 5 figure

    Nanoscopic coexistence of magnetic and superconducting states within the FeAs layers of CeFeAsO1-xFx

    Full text link
    We report on the coexistence of magnetic and superconducting states in CeFeAsO1-xFx for x=0.06(2), characterized by transition temperatures T_m=30 K and T_c=18 K, respectively. Zero and transverse field muon-spin relaxation measurements show that below 10 K the two phases coexist within a nanoscopic scale over a large volume fraction. This result clarifies the nature of the magnetic-to-superconducting transition in the CeFeAsO1-xFx phase diagram, by ruling out the presence of a quantum critical point which was suggested by earlier studies.Comment: 4 pages, 3 figs, accepted for publication as PRB Rapid com

    Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by Muon Spin Rotation

    Get PDF
    We have studied by muon spin resonance ({\mu}SR) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double period oscillations at short time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014)], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively associated with short range and long range ordered helices, coexist in a large temperature range below TN_{N} = 170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state and peculiar band structure of MnGe into account.Comment: 13 pages, 11 figure

    Common effect of chemical and external pressures on the magnetic properties of RECoPO (RE = La, Pr)

    Full text link
    We report a detailed investigation of RECoPO (RE = La, Pr) and LaCoAsO materials performed by means of muon spin spectroscopy. Zero-field measurements show that the electrons localized on the Pr3+^{3+} ions do not play any role in the static magnetic properties of the compounds. Magnetism at the local level is indeed fully dominated by the weakly-itinerant ferromagnetism from the Co sublattice only. The increase of the chemical pressure triggered by the different ionic radii of La3+^{3+} and Pr3+^{3+}, on the other hand, plays a crucial role in enhancing the value of the magnetic critical temperature and can be mimicked by the application of external hydrostatic pressure up to 24 kbar. A sharp discontinuity in the local magnetic field at the muon site in LaCoPO at around 5 kbar suggests a sizeable modification in the band structure of the material upon increasing pressure. This scenario is qualitatively supported by \emph{ab-initio} density-functional theory calculations.Comment: 13 pages, 10 figure

    Unusual disordering processes of oxygen overlayers on Rh(111): A combined diffraction study using thermal He atoms and low-energy electrons

    Get PDF
    The temperature-dependent behavior of the Rh(111)-(2X2)-1O phase was investigated by He-atom scattering (HAS) and low-energy electron diffraction. The adsorption system undergoes an order-disorder phase transition at Tc=280±5 K, with critical exponents found to be consistent with the four-state Potts model. Beyond the phase transition the HAS specular peak intensity exhibits a strong and reversible increase. This finding points toward a reduction of the surface charge-density corrugation induced by the phase transition itself. Around 160 K, hydrogen adsorbed on the Rh(111)-(2X2)-1O surface reacts with oxygen to form water, and drives the overlayer in an out-of-equilibrium condition which is characterized by a dramatic domain-wall proliferation
    • …
    corecore